Binding kinetics redefine the antagonist pharmacology of the corticotropin-releasing factor type 1 receptor.

نویسندگان

  • Beth A Fleck
  • Sam R J Hoare
  • Rebecca R Pick
  • Margaret J Bradbury
  • Dimitri E Grigoriadis
چکیده

Corticotropin-releasing factor (CRF) receptor antagonists are under preclinical and clinical investigation for stress-related disorders. In this study the impact of receptor-ligand binding kinetics on CRF₁ receptor antagonist pharmacology was investigated by measuring the association rate constant (k₁), dissociation rate constant (k₋₁), and kinetically derived affinity at 37°C. Three aspects of antagonist pharmacology were reevaluated: comparative binding activity of advanced compounds, in vivo efficacy, and structure-activity relationships. Twelve lead compounds, with little previously noted difference of affinity, varied substantially in their kinetic binding activity with a 510-fold range of kinetically derived affinity (k₋₁/k₁), 170-fold range of k₋₁, and 13-fold range of k₁. The k₋₁ values indicated previous affinity measurements were not close to equilibrium, resulting in compression of the measured affinity range. Dissociation was exceptionally slow for three ligands (k₋₁ t(1/2) of 1.6-7.2 h at 37°C). Differences of binding behavior were consistent with in vivo pharmacodynamics (suppression of adrenocorticotropin in adrenalectomized rats). Ligand concentration-effect relationships correlated with their kinetically derived affinity. Two ligands that dissociated slowly (53 and 130 min) produced prolonged suppression, whereas only transient suppression was observed with a more rapidly dissociating ligand (16 min). Investigating the structure-activity relationship indicated exceptionally low values of k₁, approaching 100,000-fold less than the diffusion-limited rate. Retrospective interpretation of medicinal chemistry indicates optimizing specific elements of chemical structure overcame kinetic barriers in the association pathway, for example, constraint of the pendant aromatic orthogonal to the ligand core. Collectively, these findings demonstrate receptor binding kinetics provide new dimensions for understanding and potentially advancing the pharmacology of CRF₁ receptor antagonists.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of corticotropin-releasing factor type I receptor regulation by nonpeptide antagonists.

Mechanisms of nonpeptide ligand action at family B G protein-coupled receptors are largely unexplored. Here, we evaluated corticotropin-releasing factor 1 (CRF(1)) receptor regulation by nonpeptide antagonists. The antagonist mechanism was investigated at the G protein-coupled (RG) and uncoupled (R) states of the receptor in membranes from Ltk(-) cells expressing the cloned human CRF(1) recepto...

متن کامل

Comparison of an agonist, urocortin, and an antagonist, astressin, as radioligands for characterization of corticotropin-releasing factor receptors.

The characteristics of a high-affinity antagonist radioligand are compared with those a high-affinity agonist in binding to the cloned corticotropin-releasing factor receptor type 1 (CRF-R1) and type 2 (CRF-R2) and to the native receptors that exist in rat cerebellum and brain stem. The relative potencies of CRF antagonists and agonists to the two types of cloned CRF receptors overexpressed sta...

متن کامل

Receptor occupancy of nonpeptide corticotropin-releasing factor 1 antagonist DMP696: correlation with drug exposure and anxiolytic efficacy.

4-(1,3-Dimethoxyprop-2-ylamine)-2,7-dimethyl-8-(2,4-dichlorophenyl)-pyrazolo[1,5-a]-1,3,5-triazine (DMP696) is a highly selective and potent, nonpeptide corticotropin-releasing factor 1 (CRF(1)) antagonist. In this study, we measured in vivo CRF(1) receptor occupancy of DMP696 by using ex vivo ligand binding and quantitative autoradiography and explored the relationship of receptor occupancy wi...

متن کامل

Exploring the binding site crevice of a family B G protein-coupled receptor, the type 1 corticotropin releasing factor receptor.

Family B of G protein-coupled receptors (GPCRs) is composed of receptors that bind peptides, such as secretin, glucagon, parathyroid hormone, and corticotropin releasing factor (CRF), which play critical physiological roles. These receptors, like all GPCRs, share a common structural motif of seven membrane-spanning segments, which have been proposed to bind small ligands, such as antalarmin, a ...

متن کامل

Alanine scanning mutagenesis of the second extracellular loop of type 1 corticotropin-releasing factor receptor revealed residues critical for peptide binding.

Upon binding of the corticotropin-releasing factor (CRF) analog sauvagine to the type 1 CRF receptor (CRF(1)), the amino-terminal portion of the peptide has been shown to lie near Lys257 in the receptor's second extracellular loop (EL2). To test the hypothesis that EL2 residues play a role in the binding of sauvagine to CRF(1) we carried out an alanine-scanning mutagenesis study to determine th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 341 2  شماره 

صفحات  -

تاریخ انتشار 2012